IDENTIFYING POTENTIAL TRAJECTORIES IN TEACHER LEARNING: Eliciting Student Thinking in Elementary Mathematics

Emily Theriault-Kimmey, Meghan Shaughnessy, and Timothy Boerst* ekimmey@umich.edu, mshaugh@umich.edu and tboerst@umich.edu

BACKGROUND

- **Eliciting Student Thinking**: A high-leverage teaching practice that entails posing questions or tasks that provoke or allow students to share their thinking about specific academic content (TeachingWorks, 2011).
- **Simulations**: An approximation of practice that places authentic practice-based demands on a participant. Can provide information that is not feasible or practical to determine in a real-life professional context.
- Understanding the nature of eliciting student thinking of teachers at different points in their professional trajectory could (a) suggest ways in which capability with the practice tends to develop over time and (b) surface implications for teacher preparation and professional development.

RESEARCH QUESTIONS

- What capabilities do end of program preservice teachers and early career teachers have with eliciting the process a student uses to solve a mathematics problem?
  - **End of program**: Teachers who have completed a teacher education program but have not yet begun work as a classroom teacher.
  - **Early career**: One to four years of teaching experience.
- What capabilities do end of program preservice teachers and early career teachers have with probing a student’s understanding of the key mathematical ideas?

METHODS

- Participants: 20 end of program preservice teachers and 25 early career teachers.
- Simulation assessment: Participants interact with a simulated student.
- Analyzed performances focusing on the degree to which the questions posed resulted in the student revealing their:
  - mathematical process for solving the problem.
  - understanding of mathematical ideas underlying the process.

SIMULATION ASSESSMENT

Preservice teachers engage in three parts:

- **Preparation**: Preparing for an interaction with a standardized student about a specific piece of student work.
- **Simulation**: Eliciting and probing the standardized student’s thinking to understand the steps the student took and the student’s understanding of the key mathematical ideas.
- **Interview**: Interpreting the student’s thinking.

Student Role Protocol to Standardize the Assessment

**What the student is thinking:**

- Uses an algorithm that is not conventional in the U.S. in which you add the same amount to the minuend and subtrahend to keep the difference the same.
- Understands that the process adds 10 ones to the minuend and 1 ten to the subtrahend and that it keeps the difference the same.
- Understands that 10 ones is equivalent to 1 ten.
- Understands that 10 ones is equivalent to 1 ten.

General orientations towards responses such as:

- Talks about digits in columns using place value language (e.g., 14 ones).
- Responses to anticipated questions

RESEARCH QUESTIONS

- What capabilities do end of program preservice teachers and early career teachers have with eliciting the process a student uses to solve a mathematics problem?
  - **End of program**: Teachers who have completed a teacher education program but have not yet begun work as a classroom teacher.
  - **Early career**: One to four years of teaching experience.
- What capabilities do end of program preservice teachers and early career teachers have with probing a student’s understanding of the key mathematical ideas?

METHODS

- Participants: 20 end of program preservice teachers and 25 early career teachers.
- Simulation assessment: Participants interact with a simulated student.
- Analyzed performances focusing on the degree to which the questions posed resulted in the student revealing their:
  - mathematical process for solving the problem.
  - understanding of mathematical ideas underlying the process.

CONCLUSIONS & POSSIBLE NEXT STEPS

- Both groups displayed strong skills in probing understanding of surface level ideas such as the meaning of the 14 and the meaning of the little 2.
- **Early career** teachers were more likely than end of program preservice teachers to probe the student’s understanding of mathematical ideas that underlie the student’s process.
- Increased experience teaching mathematics may result in increased skill in probing student understanding.
- Approximately half of early career teachers did not elicit the student’s understanding of two key mathematical ideas that underlie the process:
  - This suggests a possible professional development focus for early career teachers.
- Future studies might explore teachers’ decision-making around probing student’s understanding. How do they decide which understandings to ask about?

*The research reported here was supported by the National Science Foundation under Award No. 1535389 and No 1502711. Any opinions, findings, and recommendations expressed are those of the authors and do not reflect the views of the National Science Foundation. The authors acknowledge the contributions of Merrie Blunk, Susanna Farmer, Xueying Ji Prawat, and Sarah Kate Selling. For more information on the Assessing Teaching Practice Project, visit http://sites.soe.umich.edu/at-practice/.